As an efficient graph analytical tool, graph neural networks (GNNs) have special properties that are particularly fit for the characteristics and requirements of wireless communications, exhibiting good potential for the advancement of next-generation wireless communications. This article aims to provide a comprehensive overview of the interplay between GNNs and wireless communications, including GNNs for wireless communications (GNN4Com) and wireless communications for GNNs (Com4GNN). In particular, we discuss GNN4Com based on how graphical models are constructed and introduce Com4GNN with corresponding incentives. We also highlight potential research directions to promote future research endeavors for GNNs in wireless communications.
translated by 谷歌翻译
Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
作为图形数据的有效神经网络模型,图形神经网络(GNN)最近找到了针对各种无线优化问题的成功应用程序。鉴于GNN的推理阶段可以自然地以分散的方式实施,因此GNN是下一代无线通信中分散控制/管理的潜在推动力。但是,由于在与GNN的分散推断期间,邻居之间的信息交流可能会发生隐私泄漏。为了解决这个问题,在本文中,我们分析并增强了无线网络中GNN分散推断的隐私。具体来说,我们采用当地的差异隐私作为指标,设计了新颖的隐私信号以及隐私保证的培训算法,以实现保护隐私的推论。我们还定义了SNR私人关系权衡功能,以分析无线网络中使用GNN的分散推理的性能上限。为了进一步提高沟通和计算效率,我们采用了空中计算技术,理论上证明了其在隐私保护方面的优势。通过对合成图数据的大量模拟,我们验证了理论分析,验证提出的隐私无线信号传导和隐私保证培训算法的有效性,并就实际实施提供一些指导。
translated by 谷歌翻译
大型语言模型可以编码有关世界的大量语义知识。这种知识对于旨在采取自然语言表达的高级,时间扩展的指示的机器人可能非常有用。但是,语言模型的一个重大弱点是,它们缺乏现实世界的经验,这使得很难利用它们在给定的体现中进行决策。例如,要求语言模型描述如何清洁溢出物可能会导致合理的叙述,但是它可能不适用于需要在特定环境中执行此任务的特定代理商(例如机器人)。我们建议通过预处理的技能来提供现实世界的基础,这些技能用于限制模型以提出可行且在上下文上适当的自然语言动作。机器人可以充当语​​言模型的“手和眼睛”,而语言模型可以提供有关任务的高级语义知识。我们展示了如何将低级技能与大语言模型结合在一起,以便语言模型提供有关执行复杂和时间扩展说明的过程的高级知识,而与这些技能相关的价值功能则提供了连接必要的基础了解特定的物理环境。我们在许多现实世界的机器人任务上评估了我们的方法,我们表明了对现实世界接地的需求,并且这种方法能够在移动操纵器上完成长远,抽象的自然语言指令。该项目的网站和视频可以在https://say-can.github.io/上找到。
translated by 谷歌翻译
图形神经网络(GNN)是图形数据的有效的神经网络模型,广泛用于不同的领域,包括无线通信。与其他神经网络模型不同,GNN可以以分散的方式实现,其中邻居之间的信息交换,使其成为无线通信系统中分散控制的潜在强大的工具。然而,主要的瓶颈是无线频道损伤,其恶化了GNN的预测稳健性。为了克服这个障碍,我们在本文中分析和增强了不同无线通信系统中分散的GNN的鲁棒性。具体地,使用GNN二进制分类器作为示例,我们首先开发一种方法来验证预测是否稳健。然后,我们在未编码和编码的无线通信系统中分析分散的GNN二进制分类器的性能。为了解决不完美的无线传输并增强预测稳健性,我们进一步提出了用于上述两个通信系统的新型重传机制。通过仿真对合成图数据,我们验证了我们的分析,验证了提出的重传机制的有效性,并为实际实施提供了一些见解。
translated by 谷歌翻译
非负矩阵分解(NMF)广泛用于聚类,具有强大的解释性。在一般的NMF问题中,对称NMF是一个特殊的问题,它在图形聚类中起着重要作用,其中每个元素都测量数据点之间的相似性。大多数现有的对称NMF算法都需要因子矩阵为非负数,并且仅着眼于最大程度地减少原始矩阵之间的差距及其进行聚类的近似值,而无需考虑其他潜在的正则化项,从而产生更好的聚类。在本文中,我们探索以分解不必不需要的对称矩阵,并具有带有正则化项的有效分解算法以提高聚类性能。此外,提出了一个更普遍的框架来解决对称矩阵的对称矩阵分解问题,并在因子矩阵上限制了不同。
translated by 谷歌翻译
经验重播是深入增强学习(DRL)的重要组成部分,它可以存储经验并为代理商实时学习的经验。最近,优先的经验重播(PER)已被证明是强大的,并且在DRL代理中已广泛部署。但是,由于其频繁和不规则的内存访问,在传统的CPU或GPU架构上实施会造成大量的延迟开销。本文提出了一种硬件软件共同设计方法,以设计基于AMPER的相关内存(AM),并具有AM友好的优先采样操作。 Amper在保留学习绩效的同时,以PER中的Per取代了广泛使用的时间成本的基于Tree-Traversal的优先级抽样。此外,我们设计了基于AM的内存计算硬件体系结构,以通过利用并行的内存搜索操作来支持安珀。与GPU上的每次运行相比,Amper在在拟议的硬件上运行时,在拟议的硬件上运行55倍至270倍的延迟延迟时,显示出可比的学习表现。
translated by 谷歌翻译
将异常检测外包给第三方可以允许数据所有者克服资源限制(例如,在轻量级的IoT设备中),促进协作分析(例如,分布式或多方场景下的分布式或多方场景),并受益于较低的成本和专业知识(例如托管安全服务提供商)。尽管有这样的好处,但数据所有者可能会不愿外包异常检测而没有足够的隐私保护。为此,大多数现有的隐私解决方案将面临新的挑战,即保留隐私通常需要消除或减少数据条目之间的差异,而异常检测严重取决于该差异。最近,在本地分析设置下,通过将差异隐私(DP)保证的重点从“全部”到“良性”条目移动,这一冲突是在本地分析设置下解决的。在本文中,我们观察到这种方法不直接适用于外包设置,因为数据所有者在外包之前不知道哪些条目是“良性”的,因此无法选择地将DP应用于数据条目。因此,我们提出了一种新型的迭代解决方案,使数据所有者逐渐“脱离”良性条目的异常条目,以便第三方分析师可以通过足够的DP保证产生准确的异常结果。我们设计并实施了我们对异常检测(DPOAD)框架的差异私人外包,并通过从不同应用域中的真实数据进行实验,证明了其比基线拉普拉斯和无止痛机制的好处。
translated by 谷歌翻译
对象异常的检测对于工业过程至关重要,但是由于难以获得大量有缺陷的样本以及现实生活中无法预测的异常类型,因此无监督的异常检测和定位尤为重要。在现有的无监督异常检测和定位方法中,基于NF的方案取得了更好的结果。但是,两个子网(复杂函数)$ s_ {i}(u_ {i})$和$ t_ {i}(u_ {i})在nf中通常是多层的perceptrons,需要从2D扁平至1D,破坏了特征图中的空间位置关系并丢失空间结构信息。为了保留并有效提取空间结构信息,我们在这项研究中设计了一个复杂的函数模型,该模型具有交替的CBAM嵌入在堆叠的$ 3 \ times3 $全卷积中,该卷积能够保留并有效地在标准化流程模型中提取空间结构信息。 MVTEC AD数据集的广泛实验结果表明,Cainnflow基于CNN和Transformer Backbone网络作为特征提取器达到高级准确性和推理效率,并且Cainnflow可在MVTEC广告中获得$ 98.64 \%的像素级AUC $ 98.64 \%\%。
translated by 谷歌翻译
尽管U-NET体系结构已广泛用于分割医学图像,但我们解决了这项工作中的两个缺点。首先,当分割目标区域的形状和尺寸显着变化时,香草U-NET的精度会降低。即使U-NET已经具有在各种尺度上分析特征的能力,我们建议在U-NET编码器的每个卷积模块中明确添加多尺度特征图,以改善组织学图像的分割。其次,当监督学习的注释嘈杂或不完整时,U-NET模型的准确性也会受到影响。由于人类专家在非常精确,准确地识别和描述所有特定病理的所有实例的固有困难,因此可能发生这种情况。我们通过引入辅助信心图来应对这一挑战,该辅助信心图较少强调给定目标区域的边界。此外,我们利用深网的引导属性智能地解决了丢失的注释问题。在我们对乳腺癌淋巴结私有数据集的实验中,主要任务是分割生发中心和窦性组织细胞增多症,我们观察到了基于两个提出的增强的U-NET基线的显着改善。
translated by 谷歌翻译